2023-10-12

Where Different Climate Types Do or Do Not Occur in Middle Latitudes

As a follow-up to a recent post [LINK], I've been able to somewhat comprehensively catalogue & categorize climates of different population centers roughly in the middle latitudes (23-67 degrees, which are outside of both the tropics and the polar circles) in each continent to understand why certain climate types occur in certain continents and not others. This post explains that further. Again, I am not a trained climatologist or meteorologist; I can't guarantee that this information is accurate, and I can only say that my intuitions seem through my limited understanding to align with superficial aspects of more detailed explanations.

For the rest of this post, I will use the modification of the Trewartha categorization that I explained in the recent post. Each climate label in this categorization has four letters, with the first being uppercase and the remaining 3 being lowercase.

Climate categorization definitions

First letter

The first letter can be A, B, C, D, E, or F. Climate types have the first letter F (polar) if if the mean temperature of the hottest month is less than 10 degrees Celsius. Climate types with the first letter B (semi-arid or arid) are defined based on precipitation thresholds regardless of mean temperatures each month; this will be explained soon. If a climate type does not meet a precipitation threshold for the first letter B, then the first letter is A (tropical) if the mean temperature of the coldest month is at least 18 degrees Celsius, C (subtropical) if the mean temperature of the coldest month is less than 18 degrees Celsius but 8-12 months in the year have a mean temperature of at least 10 degrees Celsius, D (intermediate) if 4-7 months in the year have a mean temperature of at least 10 degrees Celsius (which means the mean temperature of the remaining 5-8 months, including the coldest month, must be less than 10 degrees Celsius), or E (subpolar) if 1-3 months in the year have a mean temperature of at least 10 degrees Celsius (which means the mean temperature of the remaining 9 to 11 months, including the coldest month, must be less than 10 degrees Celsius). These conditions are the same as in the Trewartha categorization.

The precipitation threshold for climates with the first letter B is \( H = 10(T - 10) + 300S \), where \( T \) is the mean annual temperature in degrees Celsius and \( S \) is the fraction (between 0 and 1) of yearly precipitation that occurs in the summer half of the year (inclusively between April through September in the northern hemisphere, or October through March in the southern hemisphere). These conditions are the same as in the Trewartha categorization.

If the mean temperature of the hottest month is less than 10 degrees Celsius, then the climate type automatically has the first letter F (polar). This holds even if the climate type would otherwise qualify for the first letter B (arid or semi-arid), because close enough to the pole, the air is too cold to hold much moisture anyway, and features of the vegetation are more influenced by the coldness than the dryness per se; more precisely, as a climate becomes colder, less moisture from the ground is lost to evapotranspiration, so the amount of precipitation needed per year to avoid a climate type with the first letter B (arid or semi-arid) is lessened anyway. If a climate type does not qualify for the first letter F (polar) but the yearly precipitation is \( P \leq 2H \), then the climate type has the first letter B (arid or semi-arid); otherwise, the first letter must be A (tropical), C (subtropical), D (intermediate), or E (subpolar) depending on the mean temperatures of the hottest and coldest months and the number of months with mean temperatures of at least 10 degrees Celsius. These conditions are the same as in the Trewartha categorization.

Second letter

The second letter depends on the first letter. If the first letter is B (arid or semi-arid), then the second letter denotes whether the climate is either semi-arid or arid. A semi-arid (steppe) climate, with the second letter being 's', has \( H < P \leq 2H \). An arid (desert) climate, with the second letter being 'w', has \( P \leq H \). These conditions are the same as in the Trewartha categorization.

If the first letter is A (tropical), then the second letter denotes whether the climate is a tropical rainforest climate or a tropical wet-and-dry climate. If at least 10 months each have at least 60 millimeters of precipitation, then the second letter is 'r' (tropical rainforest climate). Otherwise, the climate is a tropical wet-and-dry climate; the second letter is 'w' if the dry season is during the winter half of the year or 's' if the dry season is during the summer half of the year. These conditions are the same as in the Trewartha categorization.

If the first letter is F (polar), then the second letter denotes whether the climate is a tundra climate or an ice cap climate. If the mean temperature of the hottest month is at least 0 degrees Celsius but below 10 degrees Celsius, then the second letter is 't' (tundra climate); otherwise, as every month has a mean temperature below 0 degrees Celsius (implying permanent ice where water is present), the second letter is 'i' (ice cap climate). These conditions are the same as in the Trewartha categorization.

If the first letter is C (subtropical), D (intermediate), or E (subpolar), then the second letter denotes whether the climate has a dry summer or generally uniform precipitation through the year, as dry summers indicate vulnerability to droughts, wildfires, and related natural disasters. This is the main way that my modification differs from the original Trewartha categorization. If all of the following conditions hold, namely that the driest month is in the summer half of the year, the wettest month is in the winter half of the year, the wettest month has at least 3 times the mean precipitation as the driest month, and the summer half of the year has at least 3 months where the mean precipitation is at most 40 millimeters (including the driest month, by definition), then the second letter is 's', indicating a dry summer. Otherwise, the second letter is 'f', indicating a humid summer. Unlike the Köppen categorization, neither the Trewartha categorization nor my modification to it allow for the second letter to be 'w', which would indicate dry winters, when the first letter is C (subtropical), D (intermediate), or E (subpolar), and this is for two related reasons. First, there is no particular climactic or ecological feature unique to places with dry winters, as the dryness corresponds to the time of the year with the least amount of sunlight and the lowest temperatures; this is unlike when the second letter is 's' (dry summer), because dryness in the summer allows for temperatures to become arbitrarily high in the absence of precipitation (even if average temperatures are somewhat more moderate, as may happen when moisture comes in other forms like fog), which can easily lead to wildfires as is characteristic of places that have climate types with the second letter 's' (dry summer). Second, the threshold \( H \) for precipitation for a climate type to have the first letter B (arid or semi-arid) is defined to depend not only on the average temperature for the year but also on the percentage of precipitation in the summer half of the year, because evapotranspiration rates increase as the temperature increases. This means that for two places that have the same average temperature for the year, the one that has a greater percentage of precipitation occurring in the summer half of the year will experience more evapotranspiration because the temperatures in that half of the year are higher, so the climate type there is more likely to have the first letter B (arid or semi-arid) under the Trewartha categorization or my modification of it even if the Köppen categorization would make the first letter C (subtropical) or D (continental) with the second letter 'w' (dry winter), because that becomes the more salient feature of such a climate; if the climate type doesn't have the first letter B (arid or semi-arid), then there is less of a salient difference in the climates & ecologies of areas with climate types with the first letter C (subtropical), D (intermediate), or E (subpolar) and the second letter 'f' (humid summer) whether the winter is dry or not.

Third and fourth letters

The third and fourth letters are more needed in my modification of the Trewartha categorization for comparison of different climates to make sense, but the actual letters are the same (although at or below 0 degrees Celsius, I may have shifted things by 0.1 degree Celsius). In particular, the third letter indicates the mean temperature of the hottest month and the fourth letter indicates the mean temperature of the coldest month. Both the third and fourth letters come from the following set of letters. These letters are 'i' for temperatures of at least 35 degrees Celsius, 'h' for temperatures of at least 28 degrees Celsius but less than 35 degrees Celsius, 'a' for temperatures of at least 22.2 degrees Celsius but less than 28 degrees Celsius, 'b' for temperatures of at least 18 degrees Celsius but less than 22.2 degrees Celsius, 'l' for temperatures of at least 10 degrees Celsius but less than 18 degrees Celsius, 'k' for temperatures of at least 0 degrees Celsius but less than 10 degrees Celsius, 'o' for temperatures of at least -10 degrees Celsius but less than 0 degrees Celsius, 'c' for temperatures of at least -25 degrees Celsius but less than -10 degrees Celsius, 'd' for temperatures of at least -40 degrees Celsius but less than -25 degrees Celsius, and 'e' for temperatures less than -40 degrees Celsius. Thus, when I speak of the temperature-indicative third or fourth letters being higher or lower when comparing two climate types, such statements refer to this temperature scale.

Effects of mountains

Frequently, when considering transitions between climate types, I will refer to mountains lying in some direction relative to an area with a climate type and not further discuss the climate types on or across those mountains. Mountains have their own, typically polar-like, climate types and significantly break up continuity between otherwise geographically adjacent climate types in a given continent. In particular, as I discussed in a previous post [LINK], a mountain range that lies roughly along a line of longitude (meridian) creates a significant rain shadow that will depend on the direction of the prevailing winds; at more tropical latitudes, the prevailing winds are the trade winds going from east to west, so areas east of a mountain will get much more precipitation than areas west of a mountain, while at middle latitudes, the prevailing winds are the prevailing westerlies going from west to east, so areas west of a mountain will get much more precipitation than areas east of a mountain. A mountain range that lies roughly along a line of latitude usually will not create a significant rain shadow unless there is a specific warm ocean current driving wind from the equator to a pole roughly along a line of longitude (meridian), but it will block warm air going from the equator toward a pole and cold air going from a pole toward the equator; thus, it is more likely to create sharper transitions in temperature profiles (third & fourth letters in the climate type), and if this affects the position of the subtropical ridge especially around the west coast of a continent, then it can further create sharper transitions between precipitation profiles based on whether summers are dry.

Follow the jump to see further discussion of actual climate type occurrences. I will focus mostly on climates with the first letter being C (subtropical), D (intermediate), or E (subpolar), as those are the most common in the middle latitudes; there will be some discussion of climates with the first letter being B (arid or semi-arid), as there are many areas in middle latitudes that have semi-arid or arid climates, and there will be brief discussion of climates with the first letter being A (tropical) or F (polar), as those are rare outside of the tropical or polar regions respectively. I should note that this post contains two large biases in sampling. First, I have only considered population centers that are clear on Google Maps. Therefore, some of these climates may actually be more widespread in area than they look based only on where people live. Second, as I'm most familiar with North America, I may have picked more small or mid-sized cities in North America compared to other continents. Therefore, some of these climates may actually be more widespread in other continents than this post may seem to suggest.