Classical Damping of Gases and Oscillators

I was on vacation last week, and during some quiet time, I randomly happened to be thinking about explanations for damping in physical systems. I remember learning in ELE 456 — Quantum Optics, from last spring, that the phenomenological linear damping of a classical oscillator could be derived by coupling a quantum oscillator to a thermal bath of quantum oscillators; each linear oscillator is microscopically undamped, but by treating the bath through statistical thermodynamics, the coupling of the oscillator in question to a bath essentially produces a linear damping coefficient dependent on the spectrum of the bath (and the coupling too). Microscopically, the quantization of energy levels in a linear oscillator makes it easy to interpret how discrete excitations can move from one oscillator to another coupled oscillator, but I was wondering if quantum mechanics is really necessary to explain damping. Follow the jump to see an extremely rough sketch of ideas that may (or may not) justify the use of classical mechanics by itself. (Added after finishing: this turns out to be a rambling and possibly ultimately pointless post with a much clearer and more self-consistent explanation linked at the end, so for the time being, humor me.)